Dr Rui Zhu
Senior Lecturer in Statistics
Bayes Business School, Faculty of Actuarial Science and Insurance
Contact
- +44 (0)20 7040 4704
- rui.zhu@citystgeorges.ac.uk
Postal address
City St George's, University of London
Northampton Square
London
EC1V 0HB
United Kingdom
Northampton Square
London
EC1V 0HB
United Kingdom
About
Overview
Rui joined Bayes in September 2018. Her research interests are in statistical learning and its interdisciplinary applications, including classification and dimension reduction for high-dimensional data, distance metric learning, spectral data analysis, image quality assessment and hyperspectral image analysis.
Qualifications
- PhD in Statistics, University College London, United Kingdom
- MSc in Statistics, University College London, United Kingdom
- BEng, Xiamen University, China
Employment
- Senior lecturer in statistics, City, University of London, Aug 2021 – present
- Lecturer in statistics, City, University of London, Sep 2018 – Jul 2021
- Honorary lecturer, University College London, Sep 2018 – present
- Lecturer in statistics, University of Kent, Sep 2017 – Aug 2018
Languages
Chinese (Mandarin) and English.
Expertise
Primary topics
- Statistics
Publications
Conference papers and proceedings (6)
- Ren, K., Guo, Z., Zhang, Z., Zhu, R. and Li, X. (2022). Multi-Branch Network for Few-shot Learning. 2022 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 7-10 November. doi:10.23919/apsipaasc55919.2022.9980160
- Guo, J., Bao, Q., Zhu, R., Yang, W. and Liao, Q. (2022). Quality-Oriented Feature Regression for Robust Image Similarity Metric. 2022 IEEE International Conference on Multimedia and Expo (ICME) 18-22 July. doi:10.1109/icme52920.2022.9859721
- Lv, Y., Yang, W., Zuo, W., Liao, Q. and Zhu, R. (2022). Sain: Similarity-Aware Video Frame Interpolation. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 23-27 May. doi:10.1109/icassp43922.2022.9747211
- Bao, Q., Zhu, R., Gang, B., Zhao, P., Yang, W. and Liao, Q. (2022). Distilling Resolution-robust Identity Knowledge for Texture-Enhanced Face Hallucination. MM '22: The 30th ACM International Conference on Multimedia. doi:10.1145/3503161.3548437
- Dong, M., Yang, X., Zhu, R., Wang, Y. and Xue, J.-.H. (2020). Generalization Bound of Gradient Descent for Non-Convex Metric Learning.
- Bao, Q., Hui, Z., Zhu, R., Ren, P., Xie, X. and Yang, W. Improving Diffusion-Based Image Restoration with Error Contraction and Error Correction.doi:10.1609/aaai.v38i2.27833
Journal articles (34)
- Wang, X., Yang, X., Zhu, R. and Xue, J.-.H. (2025). PUAL: A classifier on trifurcate positive-unlabelled data. Neurocomputing, 637, pp. 130080–130080. doi:10.1016/j.neucom.2025.130080.
- De Mori, L., Haberman, S., Millossovich, P. and Zhu, R. (2025). Mortality forecasting via multi-task neural networks. ASTIN Bulletin pp. 1–19. doi:10.1017/asb.2025.10.
- Li, X., Lu, P., Zhu, R., Ma, Z., Cao, J. and Xue, J.-.H. (2025). Rise by Lifting Others: Interacting Features to Uplift Few-Shot Fine-Grained Classification. IEEE Transactions on Circuits and Systems for Video Technology, 35(4), pp. 3094–3103. doi:10.1109/tcsvt.2024.3501733.
- Wang, X., Zhu, R. and Xue, J.-.H. (2025). GKF-PUAL: A group kernel-free approach to positive-unlabeled learning with variable selection. Information Sciences, 690. doi:10.1016/j.ins.2024.121574.
- Asimit, V., Wang, R., Zhou, F. and Zhu, R. (2025). Efficient Positive Semidefinite Matrix Approximation by Iterative Optimisations and Gradient Descent Method. Risks, 13(2), pp. 28–28. doi:10.3390/risks13020028.
- Li, X., Wang, X., Zhu, R., Ma, Z., Cao, J. and Xue, J.-.H. (2025). Selectively Augmented Attention Network for Few-Shot Image Classification. IEEE Transactions on Circuits and Systems for Video Technology, 35(2), pp. 1180–1192. doi:10.1109/tcsvt.2024.3480279.
- Zhang, Z., Chang, D., Zhu, R., Li, X., Ma, Z. and Xue, J.-.H. (2025). Query-Aware Cross-Mixup and Cross-Reconstruction for Few-Shot Fine-Grained Image Classification. IEEE Transactions on Circuits and Systems for Video Technology, 35(2), pp. 1276–1286. doi:10.1109/tcsvt.2024.3484530.
- Wang, C., Yan, S., Chen, Y., Wang, X., Wang, Y., Dong, M. … Shang, L. (2025). Denoising Reuse: Exploiting Inter-frame Motion Consistency for Efficient Video Generation. IEEE Transactions on Circuits and Systems for Video Technology pp. 1–1. doi:10.1109/tcsvt.2025.3548728.
- Li, X., Guo, Z., Zhu, R., Ma, Z., Guo, J. and Xue, J.-.H. (2024). A simple scheme to amplify inter-class discrepancy for improving few-shot fine-grained image classification. Pattern Recognition, 156, pp. 110736–110736. doi:10.1016/j.patcog.2024.110736.
- Xu, Z., Xu, H., Lu, Z., Zhao, Y., Zhu, R., Wang, Y. … Shang, L. (2024). Can Large Language Models Be Good Companions? Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 8(2), pp. 1–41. doi:10.1145/3659600.
- De Mori, L., Millossovich, P., Zhu, R. and Haberman, S. (2024). Two-Population Mortality Forecasting: An Approach Based on Model Averaging. Risks, 12(4), pp. 60–60. doi:10.3390/risks12040060.
- Li, X., Song, Q., Wu, J., Zhu, R., Ma, Z. and Xue, J.-.H. (2023). Locally-Enriched Cross-Reconstruction for Few-Shot Fine-Grained Image Classification. IEEE Transactions on Circuits and Systems for Video Technology, 33(12), pp. 7530–7540. doi:10.1109/tcsvt.2023.3275382.
- Qi, X., Lu, Q., Pan, W., Zhao, Y., Zhu, R., Dong, M. … Shang, L. (2023). CASES. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 7(3), pp. 1–31. doi:10.1145/3610910.
- Zhu, R., Zhou, F., Yang, W. and Xue, J.-.H. (2023). Statistical hypothesis testing as a novel perspective of pooling for image quality assessment. Signal Processing: Image Communication, 114, pp. 116942–116942. doi:10.1016/j.image.2023.116942.
- Li, X., Li, Y., Zheng, Y., Zhu, R., Ma, Z., Xue, J.-.H. … Cao, J. (2023). ReNAP: Relation network with adaptiveprototypical learning for few-shot classification. Neurocomputing, 520, pp. 356–364. doi:10.1016/j.neucom.2022.11.082.
- Tsanakas, A. and Zhu, R. (2022). SELECTING BIVARIATE COPULA MODELS USING IMAGE RECOGNITION. ASTIN Bulletin, 52(3), pp. 707–734. doi:10.1017/asb.2022.12.
- Asimit, A.V., Kyriakou, I., Santoni, S., Scognamiglio, S. and Zhu, R. (2022). Robust Classification via Support Vector Machines. Risks, 10(8), pp. 154–154. doi:10.3390/risks10080154.
- Wang, Z., Liu, Y., Zhu, R., Yang, W. and Liao, Q. (2022). Lightweight Single Image Super-Resolution With Similar Feature Fusion Block. IEEE Access, 10, pp. 30974–30981. doi:10.1109/access.2022.3158936.
- Sogi, N., Zhu, R., Xue, J.-.H. and Fukui, K. (2021). Constrained mutual convex cone method for image set based recognition. Pattern Recognition pp. 108190–108190. doi:10.1016/j.patcog.2021.108190.
- Lu, X., Qiao, Y., Zhu, R., Wang, G., Ma, Z. and Xue, J.H. (2021). Generalisations of stochastic supervision models. Pattern Recognition, 109, pp. 107575–107575. doi:10.1016/j.patcog.2020.107575.
- Zhu, R. and Wüthrich, M.V. (2020). Clustering driving styles via image processing. Annals of Actuarial Science pp. 1–15. doi:10.1017/s1748499520000317.
- Yang, W., Zhou, F., Zhu, R., Fukui, K., Wang, G. and Xue, J.-.H. (2020). Deep learning for image super-resolution. Neurocomputing, 398, pp. 291–292. doi:10.1016/j.neucom.2019.09.091.
- Zhou, F., Yang, W., Gao, X., Liu, H., Zhu, R. and Xue, J.-.H. (2020). Special Issue on Advances in Statistical Methods-based Visual Quality Assessment. Signal Processing: Image Communication, 83, pp. 115695–115695. doi:10.1016/j.image.2019.115695.
- Zhu, R., Guo, Y. and Xue, J.-.H. (2020). Adjusting the imbalance ratio by the dimensionality of imbalanced data. Pattern Recognition Letters. doi:10.1016/j.patrec.2020.03.004.
- Zhu, R., Wang, Z., Sogi, N., Fukui, K. and Xue, J.-.H. (2019). A Novel Separating Hyperplane Classification Framework to Unify Nearest-class-model Methods for High-dimensional Data. IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2019.2946967.
- Zhu, R., Dong, M. and Xue, J.-.H. (2018). Learning distance to subspace for the nearest subspace methods in high-dimensional data classification. Information Sciences, 481, pp. 69–80. doi:10.1016/j.ins.2018.12.061.
- Zhu, R., Wang, Z., Ma, Z., Wang, G. and Xue, J.-.H. (2018). LRID: A new metric of multi-class imbalance degree based on likelihood-ratio test. Pattern Recognition Letters, 116, pp. 36–42. doi:10.1016/j.patrec.2018.09.012.
- Zhu, R., Zhou, F., Yang, W. and Xue, J.-.H. (2018). On Hypothesis Testing for Comparing Image Quality Assessment Metrics [Tips & Tricks]. IEEE Signal Processing Magazine, 35(4), pp. 133–136. doi:10.1109/msp.2018.2829209.
- Wang, Z., Zhu, R., Fukui, K. and Xue, J.-.H. (2018). Cone-based joint sparse modelling for hyperspectral image classification. Signal Processing, 144, pp. 417–429. doi:10.1016/j.sigpro.2017.11.001.
- Zhu, R., Zhou, F. and Xue, J.-.H. (2018). MvSSIM: A quality assessment index for hyperspectral images. Neurocomputing, 272, pp. 250–257. doi:10.1016/j.neucom.2017.06.073.
- Wang, Z., Zhu, R., Fukui, K. and Xue, J.-.H. (2017). Matched Shrunken Cone Detector (MSCD): Bayesian Derivations and Case Studies for Hyperspectral Target Detection. IEEE Transactions on Image Processing, 26(11), pp. 5447–5461. doi:10.1109/TIP.2017.2740621.
- Zhu, R. and Xue, J.-.H. (2017). On the orthogonal distance to class subspaces for high-dimensional data classification. Information Sciences, 417, pp. 262–273. doi:10.1016/j.ins.2017.07.019.
- Zhu, R., Fukui, K. and Xue, J.-.H. (2017). Building a discriminatively ordered subspace on the generating matrix to classify high-dimensional spectral data. Information Sciences, 382-383, pp. 1–14. doi:10.1016/j.ins.2016.12.001.
- Zhu, R., Dong, M. and Xue, J.-.H. (2015). Spectral Nonlocal Restoration of Hyperspectral Images With Low-Rank Property. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), pp. 3062–3067. doi:10.1109/jstars.2014.2370062.
Working paper
- Tsanakas, A. and Zhu, R. (2021). Copula model selection using image recognition.